Modeling the Charge Transport through Graphene Nano Ribbon (GNR) Between Electrodes of Different Materials
نویسندگان
چکیده
In this paper, we analyzed the influence of changing the material of electrodes on the transport properties of single junction comprising GNR (Graphene Nano Ribbon) stringed to two semi-infinite electrodes using semi empirical model. The investigation of electron transport through GNR was accomplished by linking it to different metallic electrodes (Pt, Au and Ag) under different bias voltages within Keldysh's nonequilibrium Green Function formulism (NEGF) using Extended Huckel (EHT) semi empirical approach. The simulated results revealed that among different electrode, the metallic electrodes showed maximum conductance of the order of 10nS. By comparing the I-V curves obtained using different metallic electrodes , we perceived that platinum showed maximum conductance and silver showed transmission of current amidst strongest coupling and thus affirmed to be the most effective material for electrodes for nanometer scale molecular junctions, when compared with other metallic electrodes.
منابع مشابه
Quantum modeling of light absorption in graphene based photo-transistors
Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...
متن کاملComputational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)
By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach...
متن کاملEffect of ribbon width on electrical transport properties of graphene nanoribbons
There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanorib...
متن کاملAnalysis of the Metal Work Function Dependence of Charge Transfer in Contacted Graphene Nanoribbons
In this paper, the analysis of charge injection from metal to a contacted graphene nanoribbon (GNR) is developed by means of a scattering matrix approach. The charge transport, described by the Schrödinger equation in the 2D domain of the GNRs, is solved, together with the 3D Poisson equation for the potential distribution. Varying the work function of the metal contacte...
متن کاملGraphene Nano-Ribbon Field Effect Transistor under Different Ambient Temperatures
This paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (GNRFET). The results illustrate that the GNRFET under high temperature (HT-GNRFET) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay product co...
متن کامل